2022 Research Projects

Projects are posted below; new projects will continue to be posted. To learn more about the type of research conducted by undergraduates, view the archived symposium booklets and search the past SURF projects.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:


Thermal Technology (17)

 

A Hyperspectral imager for Propulsion Testing 

Description:
The SURF student will work with a PhD student and Professor Gore to contribute to the following project.
The feasibility of utilizing a mid-infrared hyperspectral imager as a general-purpose ground testing diagnostic for rocket propulsion systems will be demonstrated. Purdue University compared temperatures deconvoluted from the hyperspectral images of a hydrogen air premixed flame with our measurements of temperature using Rayleigh scattering at identical operating conditions. This comparison has helped sponsor address a key issue involving the establishment of feasibility of obtaining spatially and temporally resolved information from mid-infrared hyperspectral imager measurements.
Purdue University work in Phase II is focused on evaluating the imager for different flame configurations to help deliver the system to NASA. Purdue University will demonstrate the use of the hyperspectral imager using: (i) two previously studied turbulent premixed hydrogen air jet flames, (ii) two previously studied turbulent premixed and partially premixed methane air jet flames, and (iii) a plume emerging from an existing rocket propellant combustion test apparatus.
Research categories:
Big Data/Machine Learning, Energy and Environment, Thermal Technology
Preferred major(s):
  • Aeronautical and Astronautical Engineering
  • Mechanical Engineering
School/Dept.:
Mechanical Engineering
Professor:
Jay Gore

More information: https://engineering.purdue.edu/GRG

 

Design and Control of Hybrid Thermal Management Systems 

Description:
Thermal management systems are used in a wide range of systems primarily for electronics cooling, and are becoming increasingly critical for aircraft as air vehicles become increasingly electrified or even hybridized. However, designing these systems is becoming increasingly challenging because the heat loads that they need to manage vary frequently in duration and magnitude. A "hybrid" thermal management system (TMS) is one that also includes a thermal battery (thermal energy storage device) to improve the system's ability to respond quickly to unexpected heat loads. These systems are similar in nature to hybrid electric vehicles that balance the use of the engine and a battery to achieve a common objective.

Designing a thermal energy storage (TES) device that has a large enough capacity, can absorb heat quickly, and is lightweight is challenging because it needs to perform well under many different load conditions, including when the heat loads are random. Performance metrics need to be simple enough that they can be evaluated by iterative optimization algorithms while capturing the complexity of the design requirements. In this project, the student(s) will design a TES device using optimization algorithms to find the best dimensions and test it in simulation against previously-designed TES devices. They will also support experimental work related to ongoing research in the area of design and control of these complex thermal systems.

Research categories:
Energy and Environment, Thermal Technology, Other
Preferred major(s):
  • Mechanical Engineering
  • Aeronautical and Astronautical Engineering
Desired experience:
Ideally the student will have completed Differential Equations, Thermodynamics I, as well as dynamics or controls courses in their major. Proficiency coding in MATLAB or Python is also desirable.
School/Dept.:
School of Mechanical Engineering
Professor:
Neera Jain

More information: https://engineering.purdue.edu/JainResearchLab/

 

Development of Automated Load-Based Testing Apparatus for Air Conditioners & Heat Pumps Performance Evaluation 

Description:
Project Description: The energy demands for space conditioning is continuously increasing with population growth, rising temperatures, and improving standards of living. To counteract the effect of growing air-conditioners and heat-pumps demand on overall energy consumption, improving the energy efficiency of systems sold in the market is crucial. One of the effective and tested approaches for this has been to set energy efficiency benchmarks based on the minimum energy performance standards (MEPS) which drive technological innovation. For air-conditioners and heat pumps, a testing and rating procedure forms the technical basis for these energy efficiency standards to estimate equipment seasonal performance. However, with current rating standards for residential heat pumps, significant dissimilarities have been observed between the equipment rated performance and the equipment's actual operational performance in field applications. Load-based testing is evolving as an alternative approach for obtaining equipment performance data that captures the effects of dynamic interactions between a heat pump or air conditioner, its integrated controls, and a prototypical building that it serves. Current load-based testing requires the use of psychometric chambers to vary ambient temperatures and building loads which is time-consuming and expensive, particularly for residential split systems when different combinations of indoor and outdoor units need to be tested. Thus, there is a need for a low-cost, automated, load-based method of test that doesn’t require psychrometric chambers and where multiple units could be tested in a single large test room similar to a life-test facility. In this project, we are working on the development of a low-cost and automated testing apparatus and methodology for direct expansion air conditioners and heat pumps. The student who joins this project will have the opportunity to contribute to important experimental work will learn about air-conditioners working and their testing approach, thermodynamics, and heat transfer applicable to thermal systems, and will also learn about the test facility development process.

Final Deliverables: The student will work closely with the graduate student mentor on test facility development and experiments related to the performance evaluation of heat-pumps and air-conditioners based on the load-based testing methodology. The student will also assist in analyzing the experimental data. Students will partake in weekly literature reading and discussion, small group meetings, and will keep a log of their weekly progress. They will present their updates at weekly meetings and will present a talk or poster at the end of the summer. Students will end the summer with a greater understanding of the energy challenges in space conditioning and will develop a broad range of technical skills pertinent to the experimentation and performance evaluation of residential air-conditioning and heat-pumping systems.
Research categories:
Energy and Environment, Engineering the Built Environment, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Civil Engineering
Desired experience:
Applicants should have a general interest in energy and sustainability. Should also have a strong background/interest in thermodynamics and heat transfer. Applicants with experience in some (not all) of the following are preferred: LabVIEW, Python, Engineering Equation Solver, MATLAB, 3D-CAD Software. 2nd semester Sophomores, Juniors, and 1st semester Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
Travis Horton
 

Development of Next-Generation Performance Evaluation Methodology for Air-Conditioners and Heat-Pumps 

Description:
Project Description: Space conditioning accounts for a major portion of the energy consumption in buildings over the world and the energy demands for this is continuously increasing with population growth, rising temperatures, and improving standards of living. To counteract the effect of growing air-conditioners and heat-pumps demand on overall energy consumption, improving the energy efficiency of systems sold in the market is crucial. One of the effective and tested approaches for this has been to set energy efficiency benchmarks based on the minimum energy performance standards (MEPS) which drives the technological innovation and implementation in the market. For air-conditioners and heat pumps, a testing and rating procedure forms the technical basis for these energy efficiency standards to estimate equipment seasonal performance. However, with current rating standards for residential heat pumps, significant dissimilarities have been observed between the equipment rated performance or efficiency based on these standards in the lab and the equipment's actual operational performance in field applications. Thus, there is a great need for the development of a testing and rating methodology which captures the dynamic performance of an equipment representative of its actual field application. In this project, we are working on the development of a next-generation load-based testing methodology for residential air-conditioners and heat-pumps. The student who joins this project will have the opportunity to contribute to important experimental work, will learn about air-conditioners working and their testing approach, thermodynamics, and heat transfer applicable to thermal systems, and will also learn about the standard development process.

Final Deliverables: The student will work closely with the graduate student mentor on experiments related to the performance evaluation of heat-pumps and air-conditioners based on the load-based testing methodology. The student will also assist in analyzing the experimental data. Students will partake in weekly literature reading and discussion, small group meetings, and will keep a log of their weekly progress. They will present their updates at weekly meetings and will present a talk or poster at the end of the summer. Students will end the summer with a greater understanding of the energy challenges in space conditioning and will develop a broad range of technical skills pertinent to the experimentation and performance evaluation of residential air-conditioning and heat-pumping systems.
Research categories:
Thermal Technology
Preferred major(s):
  • Mechanical Engineering
Desired experience:
Applicants should have a general interest in energy and sustainability. Should also have a strong background/interest in thermodynamics and heat transfer. Applicants with experience in some (not all) of the following are preferred: LabVIEW, Python, Engineering Equation Solver, MATLAB, 3D-CAD Software. 2nd semester Sophomores, Juniors, and 1st semester Seniors are preferred.
School/Dept.:
Civil Engineering
Professor:
Travis Horton
 

Electrical Dehydrogenation Reactor Optimization for The Production of Ethylene Using Renewable Energies 

Description:
Ethylene is one of the most important building blocks of the chemical industry1. Its global market was estimated at ~160 million Tons in 2020 and it is forecast to reach ~210 million Tons by 20272. Between 1.0 and 1.6 tons of CO2 are emitted per ton of Ethylene produced. This means Ethylene production accounted for around 0.47-0.75% of the world’s total carbon emissions in 2020, estimated at 34 billion tons3. The U.S. has set a course to reach net-zero emissions economy-wide by no later than 20507,8. This makes it imperative decarbonizing Ethylene production.
Ethylene is mainly produced by Steam Cracking (SC), where hydrocarbons transform into ethylene in the presence of steam at high temperatures11. SC normally implements hydrocarbon combustion to produce the necessary energy for reaction. This is the main reason why SC emits so much CO21. The NSF Center for Innovative and Strategic Transformation of Alkane Resources (CISTAR)5 is currently researching the coupling of SC with renewable electricity. This would allow a significant reduction of CO2 emissions during SC4.
As part of its research, CISTAR carries out detailed Computational Fluid Dynamics (CFD) simulations. This allows evaluating the impact of fluid behavior during reactions. Several geometries are currently under evaluation. As part of the SURF Program, CISTAR is interested in recruiting one student to support the CFD simulations team. The goal is to evaluate the performance of the different reactor geometries considered, as well as propose potentially attractive new configurations. No previous experience with CFD simulations is necessary. However, it is advisable the student has a strong motivation for computer simulations. Experience working with Ansys Fluent and Aspen Plus could be beneficial.
Research categories:
Chemical Unit Operations, Energy and Environment, Fluid Modelling and Simulation, Material Modeling and Simulation, Thermal Technology
Preferred major(s):
  • Chemical Engineering
  • Mechanical Engineering
  • Electrical Engineering
Desired experience:
• It is advisable the student has a strong motivation for computer simulations • Experience working with Ansys Fluent and Aspen Plus could be beneficial
School/Dept.:
Davidson School of Chemical Engineering
Professor:
Rakesh Agrawal

More information: https://engineering.purdue.edu/RARG/ and https://cistar.us/

 

Evaluation of a Prototype Membrane Energy Exchanger for Efficient Buildings 

Description:
Buildings are the largest source of energy consumption in the U.S., constituting roughly 48% of our primary energy consumption, and air conditioning is one of the largest uses of energy within buildings. As global temperatures rise from global warming, populations grow, and greater emphasis is put on indoor air quality and comfort, cooling energy demand will grow too. The long-standing conventional technologies we rely on for space cooling are inherently inefficient in warm, humid climates where a large portion of the cooling energy goes to the condensation dehumidification process instead of air cooling. Thus, there is a great need for innovative, disruptive technological development that can challenge the way we’ve provided space cooling for decades. In this project, we are developing a novel technology that mechanically separates water vapor out of air using water vapor selective membranes, which is much more efficient than condensing water out of air. Additionally, we are exploring innovative heat and mass transport phenomena using novel materials. The student who joins this project will have the opportunity to contribute to important experimental work, will learn about energy use and the thermodynamics and heat transfer in buildings, and will learn about material development, too.

The student will work closely with the graduate student mentor on experiments related to porous membrane fabrication and characterization along with the testing of the novel membrane energy exchanger’s performance (heat transfer and dehumidification properties). The student will also assist in validating thermodynamic models using the experimental data. Students will partake in weekly literature reading and discussion small group meetings and will keep a log of their weekly progress. They will present their updates at weekly meetings and will present a talk or poster at the end of the summer. Students will end the summer with a greater understanding of the energy challenges in the building sphere and will develop a broad range of scientific skills pertinent to the design and evaluation of new technologies.
Research categories:
Energy and Environment, Engineering the Built Environment, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
Desired experience:
Applicants should have a general interest in energy and sustainability. Should also have a strong background/interest in thermodynamics and heat transfer. Applicants with experience in some (not all) of the following are preferred: LabVIEW, Python (Jupyter, Google Colab, etc.) Engineering Equation Solver, MATLAB, 3D-CAD Software, prototype design/manufacturing, and Adobe Illustrator. 2nd semester Sophomores, Juniors, and 1st semester Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
James Braun

More information: https://engineering.purdue.edu/CHPB

 

Experimental Methods for Aerothermal Environments 

Description:
The student will help graduate students and faculty to design and develop experimental methods and instrumentation for research in high-enthalpy aerothermal flow systems relevant to advanced propulsion devices. They will integrate and operate flow hardware, install and evaluate instrumentation and data acquisition system, and help collect and analyze data acquired during testing. The student will gain valuable hands-on experience culminating in a final presentation that will be graded by the advisor.
Research categories:
Energy and Environment, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Aeronautical and Astronautical Engineering
Desired experience:
CAD, MATLAB, P&ID, fabrication
School/Dept.:
School of Mechanical Engineering
Professor:
Terrence Meyer

More information: engineering.purdue.edu/trmeyer

 

Experimental Study of Heat Transfer in Nanomaterials 

Description:
This project deals with the study of heat transfer in very thin film materials using Raman Spectroscopy and Ultrafast Laser Spectroscopy. Heat transfer in nanoscale materials including 2D materials (very thin layered materials bonded by van der Waal’s force) shows superior characteristics for applications in numerous advanced devices. Their thermal transport behaviors are also different compared with bulk materials, and an understanding of the transport process is important for applications of these materials. We use non-contact, optical method (i.e., lasers etc.) to investigate heat flow in these materials. The undergraduate student will work with graduate students to learn to use state-of-the-art experimental facilities, carry out experiments, and analyze experimental results.
Research categories:
Energy and Environment, Nanotechnology, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Physics
Desired experience:
Junior or Senior standing
School/Dept.:
Mechanical Engineering
Professor:
Xianfan Xu

More information: https://engineering.purdue.edu/~xxu/; https://engineering.purdue.edu/NanoLab/

 

High-efficiency solar-powered desalination  

Description:
Water and energy are tightly linked resources that must both become renewable for a successful future. The United Nations predicts that 6 billion people will face water scarcity by 2050. This warrants the need to develop efficient and realizable engineering solutions for desalination using the vast availability of solar energy.
This project aims to design, prototype, and test novel configurations for membrane-based desalination (reverse osmosis), powered by solar-thermal engines. The student will be part of a team of graduate and undergraduate students responsible for process design, thermal-fluid modeling and simulation, hydraulic circuit prototyping and testing, and experimental data analysis.
All students will be required to read relevant, peer-reviewed literature and keep a notebook or log of weekly research progress. At the end of the semester or term, each student will present a talk or poster on their results.
Research categories:
Ecology and Sustainability, Energy and Environment, Fluid Modelling and Simulation, Internet of Things, Nanotechnology, Thermal Technology
Preferred major(s):
  • No Major Restriction
Desired experience:
Applicants should have an interest in thermodynamics, water treatment, and sustainability. Applicants with experience in some (not all) of the following are preferred: experimental design and prototyping, manufacturing, Python, LabView, EES, MATLAB, 3D CAD Software, & Adobe Illustrator. Rising Juniors and Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
David Warsinger

More information: www.warsinger.com

 

High-performance Radiative Cooling Nanocomposites 

Description:
Radiative cooling is a passive cooling technology without power consumption, via reflecting sunlight and radiating infrared heat, both into the deep space. Compared to conventional air conditioners, radiative cooling not only saves energy, but also combats climate crisis since all the heat goes to deep space instead of stays on the earth. Recently, our group has invented commercial-like particle-matrix paints (nanocomposites) that cool below the surrounding temperature under direct sunlight. The Purdue cooling paints attracted remarkable global attention and won a Guinness World Record. Read, for example, the BBC News coverage here: https://www.bbc.com/news/science-environment-56749105. Currently we are working to improve the performance and create new radiative cooling solutions.

In this SURF project, we are looking for self-motivated students to work with our PhD students. The student will first synthesize nanocomposites via some wet chemistry and/or 3D printing methods. The optical, mechanical, and other relevant properties will then be characterized with spectrometers and other specialized equipment. Field tests will be performed to measure the cooling performance of the materials and devices. The work is expected to results in journal paper(s) of high impact. Students who make substantial contributions to the work can expect to be co-authors of the paper(s).
Research categories:
Energy and Environment, Material Processing and Characterization, Nanotechnology, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Environmental and Ecological Engineering
Desired experience:
courses in heat transfer and thermodynamics are a plus but not required
School/Dept.:
Mechanical Engineering
Professor:
Xiulin Ruan

More information: https://engineering.purdue.edu/NANOENERGY/

 

Modeling High Efficiency Thermophotovoltaic Systems 

Description:
This project studies by numerical simulation the impact of optical multilayer structure on improving the efficiency of thermophotovoltaic (TPV) devices. TPV devices convert heat to electricity using thermal radiation to illuminate a photo-voltaic (PV) diode made from semiconductor materials. Typically, this radiation is generated by a blackbody-like emitter. Thermal radiation includes a broad range of wavelengths, but only high energy photons can be converted to heat by the PV diode, which severely limits efficiency. Thus, introducing a selective emitter and filter to recycle unwanted photons can greatly enhance performance.

In this project, the student will develop/upgrade a GUI-based tool to calculate the emittance spectrum and efficiency of a multilayer structure based TPV device. The tool is hosted and run through nanoHUB.org - an open-access science gateway for cloud-based simulation tools and resources in nanoscale science and technology. The student will also work with graduate students and use this tool to study how to improve the TPV efficiency based on physical models.
Research categories:
Nanotechnology, Thermal Technology
Preferred major(s):
  • Electrical Engineering
  • Computer Engineering
  • Mechanical Engineering
  • Physics
Desired experience:
Programming experience in Python, C/C++, and/or MATLAB/Octave Enthusiasm for scientific computing Good understanding of electromagnetism and heat transfer
School/Dept.:
Electrical & Computer Engineering
Professor:
Peter Bermel
 

Physics and Analytics of Lithium Batteries 

Description:
Lithium ion (Li-ion) batteries are ubiquitous. Thermal, electrochemical, and degradation characteristics of these systems are critical toward safer and high-performance batteries for electric vehicles. As part of this research, physics-based and data-driven analytics of experimental and simulated performance under normal and anomalous operating conditions of lithium-ion and lithium metal batteries will be performed.

The final deliverable will be one research report (based on weekly progress presentations and updates) and one final presentation.
Research categories:
Energy and Environment, Material Modeling and Simulation, Material Processing and Characterization, Thermal Technology
Preferred major(s):
  • No Major Restriction
Desired experience:
Strong analytical skill and desire to learn new experimental and modeling & analysis tools.
School/Dept.:
Mechanical Engineering
Professor:
Partha Mukherjee

More information: https://engineering.purdue.edu/ETSL/

 

Polaritonic Energy Transport: Hybridizing Radiation and Conduction for Microelectronics Cooling 

Description:
Who we are… Specere is a latin word that means “to look or behold.” That’s what we do. We look, explore, and examine different ways to: (1) move energy with light and (2) get information from light. More specifically, we are a light lab employing infrared physics to create spectroscopic, thermal, and sensing solutions.

Who we are seeking… We look for motivated and hard-working undergraduates having both strong aspirations for post-graduate studies as well as those that are just “grad school curious.” All applicants should be capable of working independently while effectively communicating within a team setting.

Research Topic, Polaritonic Energy Transport: We seek to design materials capable of more effectively moving heat at extremely small scales like those in modern microelectronics. Success will enable: more efficient data centers, power electronics like those in EV’s, and new computing architectures.

What’ You’ll Do: Team members will be responsible for designing novel metamaterial stacks capable of maximizing heat transfer using a combination of computational modeling and experimental measurements of optical properties. Direct mentoring from Dr. Beechem will build your skills up in each area such that you will gain proficiency in advanced simulation (COMSOL) and spectroscopic tools (Raman, IR-ellipsometry). In addition, you will have the chance to participate in writing journal articles and pursuing patents based on your work.
Research categories:
Big Data/Machine Learning, Material Modeling and Simulation, Material Processing and Characterization, Nanotechnology, Thermal Technology
Preferred major(s):
  • No Major Restriction
Desired experience:
Proficiency in Matlab, COMSOL or both is a plus.
School/Dept.:
School of Mechanical Engineering
Professor:
Thomas Beechem

More information: www.specere.org

 

Renewable energy-powered water technologies 

Description:
Water and energy are tightly linked resources that must both become renewable for a successful future. However, today, water and energy resources are often in conflict with one another, especially related to impacts on electric grids. Further, advances in nanotechnology, material science and artificial intelligence allow for new avenues to improve the widespread implementation of desalination and water purification technology. The team is pursuing multiple projects that aim to explore solar and wind-powered desalination, nanofabricated membranes, light-driven reactions, artificial intelligence control algorithms, and thermodynamic optimization of energy systems. The student will be responsible for fabricating membranes, building hydraulic systems, modeling thermal fluid phenomenon, analyzing data, or implementing control strategies in novel system configurations. More information here: www.warsinger.com
Research categories:
Big Data/Machine Learning, Chemical Catalysis and Synthesis, Ecology and Sustainability, Energy and Environment, Engineering the Built Environment, Environmental Characterization, Fluid Modelling and Simulation, Material Modeling and Simulation, Nanotechnology, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Civil Engineering
  • Environmental and Ecological Engineering
  • Chemistry
  • Chemical Engineering
  • Materials Engineering
Desired experience:
Applicants should have an interest in thermodynamics, water treatment, and sustainability. Applicants with experience in some (not all) of the following are preferred: experimental design and prototyping, manufacturing, Python, LabView, EES, MATLAB, 3D CAD Software, & Adobe Illustrator. Rising Juniors and Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
David Warsinger

More information: www.warsinger.com

 

Resilient Extraterrestrial Habitat Engineering: Design and Testing 

Description:
There is growing interest from Space agencies such as NASA and the European Space Agency in establishing permanent human settlements outside Earth. To advance knowledge in the field, the Resilient Extra-Terrestrial Habitat Institute (RETHi) is taking steps to develop technologies that will enable resilient habitats in deep space, that will adapt, absorb and rapidly recover from expected and unexpected disruptions without fundamental changes in function or sacrifices in safety.
To study, demonstrate, and evaluate the technologies developed in pursuit of this mission, a multi-physics cyber-physical testbed is being founded at the Ray W. Herrick Laboratories at Purdue University with collaboration from partners at three universities and two industrial partners. It allows to examine emergent behaviors in habitat systems and the interactions among its virtual (computational) and physical components. The testbed will consider a habitat system and will aim to emulate the extreme temperature fluctuations that happen in deep space. To achieve this goal, a thermal transfer system is being developed, consisting of a chiller, an array of glycol lines, in-line heaters, actuated valves, and a series of sensors. Operated under a tuned controller, the thermal transfer system can cool or heat a certain surface area of the structure of the habitat to maintain a given temperature. However, to fully control the thermal transfer system is not straightforward. One of the critical challenges is its deep uncertainty, which results from inaccurate or long-delay sensors, variant test setup, complex controller design, etc. Therefore, a systematic study is needed to quantify the uncertainties to facilitate the thermal transfer system development. Emulation of a particular scenario considering a meteoroid impact will be performed, with random variations in the location and size of the impact and resulting consequences.
We also aim to consider design trade-offs aimed toward the goals of resilience. Thus, we have also established a modeling platform to support rapid, stochastic simulations of habitat systems to quantify the space architectures that enhance resilience. These might consider the important features of the robots, the sensors, and the structure itself that make the habitat resilient. Physics-Infused modeling is a gray-box method to model physical parameters using low-fidelity/computationally-efficient models in conjunction with high-fidelity/computationally-expensive samples. We combine samples from the high-fidelity model framework with low-fidelity dynamic models and create a better combination for state prediction to achieve this goal. One of the critical problems here is the difference in state space of the models and finding the optimal method to sample a high-fidelity model.
We are looking for undergraduate students to play key roles in this project, under the guidance of a graduate student and faculty members. The students are also expected to prepare a poster presentation on the results, and author a research paper if the desired results are achieved.
Research categories:
Deep Learning, Human Factors, Material Modeling and Simulation, Thermal Technology
Preferred major(s):
  • No Major Restriction
  • Mechanical Engineering
  • Aeronautical and Astronautical Engineering
  • Civil Engineering
  • Computer Engineering
  • Computer Science
Desired experience:
Students interested in this project should be critical thinkers, and have good experimental skills. Some projects will require programming skills (Python), CAD skills, and experience in MATLAB/Simulink.
School/Dept.:
Mechanical Engineering, Civil Engineering, Aerospace Engineering (we will have multiple faculty advising)
Professor:
Shirley Dyke

More information: https://www.purdue.edu/rethi/

 

Thermal management of electronic devices 

Description:
The continued miniaturization of electronic devices, with expanded functionality at reduced cost, challenges the viability of products across a broad spectrum of industry applications. The electronics industry is driven by global trends in storage, transmission, and processing of extreme quantities of digital information (cloud computing, data centers), increasing electrification of the transportation sector (electric vehicles, hybrid aircraft, batteries), and the proliferation of interconnected computing devices (mobile computing, IoT, 5G). Proper thermal management of electronic devices is critical to avoid overheating failures and ensure energy efficient operation. In view of these rapidly evolving markets, most of the known electronics cooling technologies are approaching their limits and have a direct impact on system performance (e.g., computing power, driving range, device size, etc.).

Research projects in the Cooling Technologies Research Center (CTRC) are exploring new technologies and discovering ways to more effectively apply existing technologies to addresses the needs of companies and organizations in the area of high-performance heat removal from compact spaces. One of the distinctive features of working in this Center is training in practical applications relevant to industry. All of the projects involve close industrial support and collaboration in the research, often with direct transfer of the technologies to the participating industry members. Projects in the Center involve both experimental and computational aspects, are multi-disciplinary in nature, and are open to excellent students with various engineering and science backgrounds. Multiple different research project opportunities are available based on student interests and preferences.
Research categories:
Big Data/Machine Learning, Energy and Environment, Fluid Modelling and Simulation, Material Modeling and Simulation, Nanotechnology, Thermal Technology
Preferred major(s):
  • No Major Restriction
School/Dept.:
School of Mechanical Engineering
Professor:
Justin Weibel

More information: https://engineering.purdue.edu/CTRC/research/

 

Understanding Quantum Correlations of Light for Imaging  

Description:
We aim to leverage the expertise in two fields of computational and quantum imaging to develop classical algorithms to optimize and process quantum correlated images. On one hand, we introduce quantum complexity to imaging algorithms which deserves the attention of AI-assisted signal/image processing to extract hidden information from measurements. On the other hand, we iteratively engineer quantum states of a light source to enhance imaging resolution. Our goal is to implement a room-temperature quantum light source and understand and optimize its quantum correlations in multiple dimensions. We plan to apply computational and machine learning methods to reconstruct images using model-based gradient ascent and Bayesian estimation techniques.
Research categories:
Big Data/Machine Learning, Material Processing and Characterization, Nanotechnology, Thermal Technology
Preferred major(s):
  • Electrical Engineering
  • Computer Science
  • Physics
Desired experience:
Junior or Senior students with experience/knowledge of image processing, machine learning and optics. GPA>3.5
School/Dept.:
Electrical and computer Engineering
Professor:
Mahdi Hosseini